

How Designs Differ: Non-linear Embeddings Illuminate Intrinsic Design Complexity

Wei Chen, Jonah Chazan, and Mark Fuge

The Informatics for Design, Engineering, and Learning Lab (IDEAL)

Department of Mechanical Engineering

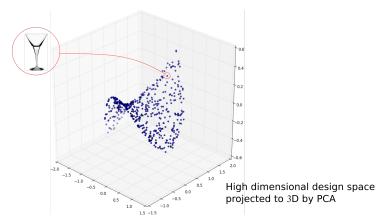
University of Maryland

August 22, 2016

Motivation

Fully **unsupervised** method to construct low dimensional **semantic spaces** from high dimensional design spaces

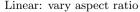
Continuous generation of new valid designs by exploring the semantic space


Valid vs Invalid Design

Design representation using Bezier curves: dimensionality / degrees of freedom?

Manifold Assumption

High dimensional design parameters actually lie on a lower-dimensional manifold (semantic space)



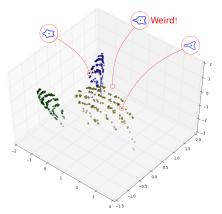
Experiment samples

Synthetic example: superformula

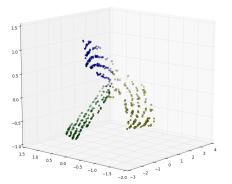
$$(x,y) = superformula(a,b,m_1,m_2,n_1,n_2,n_3)$$

Nonlinear: vary n_2 and n_3

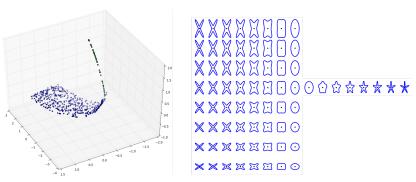
Multiple categories: vary m_1 or m_2

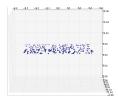

Experiment samples

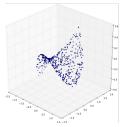
Real-world example: glassware



Start by learning the properties of design spaces.

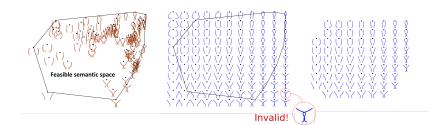

Why?

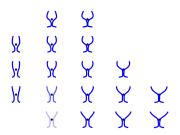

Multiple manifolds

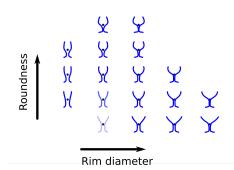

Multiple manifolds with intersection

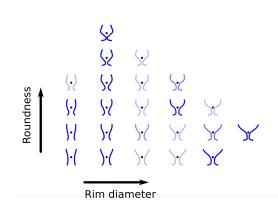
Multiple manifolds with different intrinsic dimensionality

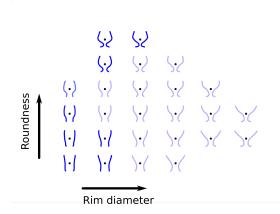
Linear: PCA

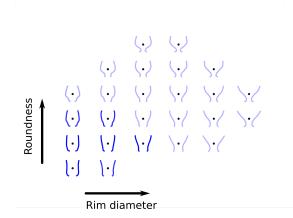


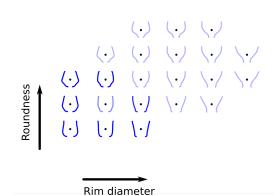

Nonlinear: kernel PCA, autoencoder, ...

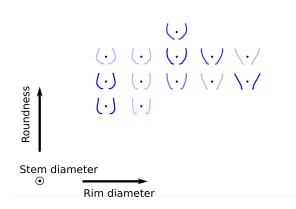

Embedding: $f: \mathcal{X} \to \mathcal{F}$


Reconstruction: $g: \mathcal{F} \to \mathcal{X}$


Choose valid designs in a semantic space







Application Examples

Design optimization: $\mathcal{X} \in \mathbb{R}^D \to \mathcal{F} \in \mathbb{R}^d$, continuous

Semantic-based design automation: $\mathcal{F} \to \mathcal{X}$

Thank you

 $\label{eq:code-data:github.com/IDEALLab/design_embeddings_idetc_2016} Get \ code+data: \\ \ github.com/IDEALLab/design_embeddings_idetc_2016$

Get paper: ideal.umd.edu/publications.html

Get in touch: wchen459@umd.edu